Trajectoire du Soleil : Différence entre versions
(Created page with " La trajectoire du Soleil dans le ciel dépend à la fois de la période de l'année et du lieu de l'observation. Les grandeurs utiles pour connaitre la trajectoire du Soleil...") |
|||
Ligne 1 : | Ligne 1 : | ||
− | + | La trajectoire du Soleil dans le ciel dépend à la fois de la période de l'année et du lieu de l'observation. Les grandeurs utiles pour connaitre la trajectoire du Soleil sont les suivantes: | |
− | Déclinaison | + | == Définitions == |
− | + | ||
+ | Déclinaison δ | ||
+ | Angle entre les rayons du Soleil et le plan de l'équateur, période annuelle, positive en été (hémisphère nord), du 21 mars au 21 septembre. (−23,45°<δ<+23,45° | ||
) | ) | ||
Angle horaire ω | Angle horaire ω | ||
Ligne 18 : | Ligne 20 : | ||
) et azimut (a | ) et azimut (a | ||
) solaires. | ) solaires. | ||
− | Hauteur h | + | === Hauteur h === |
La hauteur (angle du point visé avec le plan horizontal) est donnée par la formule: | La hauteur (angle du point visé avec le plan horizontal) est donnée par la formule: | ||
sin(h)=sin(ϕ)∗sin(δ)+cos(ϕ)∗cos(δ)∗cos(ω) | sin(h)=sin(ϕ)∗sin(δ)+cos(ϕ)∗cos(δ)∗cos(ω) | ||
− | Azimut a | + | === Azimut a === |
L'azimut (angle entre le plan vertical passant par le soleil et le méridien du lieu) est donné par les équations: | L'azimut (angle entre le plan vertical passant par le soleil et le méridien du lieu) est donné par les équations: | ||
Ligne 30 : | Ligne 32 : | ||
Pour l'instant, ces valeurs sont données en fonction de l'angle solaire, c'est à dire du temps solaire vrai (indiqué par un cadran solaire). Le lien avec le temps solaire moyen ou légal (lu sur une montre) est complexe à cause des irrégularités du mouvement de la Terre. | Pour l'instant, ces valeurs sont données en fonction de l'angle solaire, c'est à dire du temps solaire vrai (indiqué par un cadran solaire). Le lien avec le temps solaire moyen ou légal (lu sur une montre) est complexe à cause des irrégularités du mouvement de la Terre. | ||
− | Ressources | + | |
+ | |||
+ | == Ressources == | ||
Les justifications astronomiques des calculs de h | Les justifications astronomiques des calculs de h | ||
Ligne 36 : | Ligne 40 : | ||
peuvent être retrouvés par exemple dans la documentation en ligne de soleil-vapeur.org (première partie: Le capteur et la production de vapeur, Chapitre - Dossier de calculs). | peuvent être retrouvés par exemple dans la documentation en ligne de soleil-vapeur.org (première partie: Le capteur et la production de vapeur, Chapitre - Dossier de calculs). | ||
+ | |||
Pour le lien temps solaire-temps légal, on peut aussi regarder ici: http://herve.silve.pagesperso-orange.fr/solaire.htm . | Pour le lien temps solaire-temps légal, on peut aussi regarder ici: http://herve.silve.pagesperso-orange.fr/solaire.htm . |
Version du 16 janvier 2017 à 15:50
La trajectoire du Soleil dans le ciel dépend à la fois de la période de l'année et du lieu de l'observation. Les grandeurs utiles pour connaitre la trajectoire du Soleil sont les suivantes:
Définitions
Déclinaison δ Angle entre les rayons du Soleil et le plan de l'équateur, période annuelle, positive en été (hémisphère nord), du 21 mars au 21 septembre. (−23,45°<δ<+23,45° ) Angle horaire ω Dû à la rotation de la Terre sur son axe, angle entre le méridien de l'observateur (longitude) et le méridien parallèle aux rayons du Soleil, période journalière (−180°<ω<+180° , ω=0 au midi solaire) Latitude géographique ϕ Angle entre la verticale du lieu et le plan de l'équateur, positive dans l'hémisphère nord (−90°<ϕ<+90° )
Pour obtenir des grandeurs plus simples à visualiser, on définit la hauteur h et l'azimut a du Soleil. Ainsi, un observateur fixe en O, regardant au sud, doit pour viser le Soleil, tourner la tête d'un angle a puis lever la tête d'un angle h
. Définition des angles, hauteur (h ) et azimut (a ) solaires.
Hauteur h
La hauteur (angle du point visé avec le plan horizontal) est donnée par la formule: sin(h)=sin(ϕ)∗sin(δ)+cos(ϕ)∗cos(δ)∗cos(ω)
Azimut a
L'azimut (angle entre le plan vertical passant par le soleil et le méridien du lieu) est donné par les équations: sin(a)=cos(δ)∗sin(ω)cos(h) cos(a)=−cos(ϕ)∗sin(δ)+sin(ϕ)∗cos(δ)∗cos(ω)cos(h)
Pour l'instant, ces valeurs sont données en fonction de l'angle solaire, c'est à dire du temps solaire vrai (indiqué par un cadran solaire). Le lien avec le temps solaire moyen ou légal (lu sur une montre) est complexe à cause des irrégularités du mouvement de la Terre.
Ressources
Les justifications astronomiques des calculs de h et a
peuvent être retrouvés par exemple dans la documentation en ligne de soleil-vapeur.org (première partie: Le capteur et la production de vapeur, Chapitre - Dossier de calculs).
Pour le lien temps solaire-temps légal, on peut aussi regarder ici: http://herve.silve.pagesperso-orange.fr/solaire.htm .
Nous avons développé des programmes Matlab permettant de calculer ces valeurs a et h en fonction de la date, de l'ehure et de la position GPS. Ils peuvent être retrouvés sur le répertoire Github de osefrance.